Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We analyze a spatially extended version of a well-known model of forest-savanna dynamics, which presents as a system of nonlinear partial integro-differential equations, and study necessary conditions for pattern-forming bifurcations. Homogeneous solutions dominate the dynamics of the standard forest-savanna model, regardless of the length scales of the various spatial processes considered. However, several different pattern-forming scenarios are possible upon including spatial resource limitation, such as competition for water, soil nutrients, or herbivory effects. Using numerical simulations and continuation, we study the nature of the resulting patterns as a function of system parameters and length scales, uncovering subcritical pattern-forming bifurcations and observing significant regions of multistability for realistic parameter regimes. Finally, we discuss our results in the context of extant savanna-forest modeling efforts and highlight ongoing challenges in building a unifying mathematical model for savannas across different rainfall levels.more » « less
-
Spatial systems with heterogeneities are ubiquitous in nature, from precipitation, temperature, and soil gradients controlling vegetation growth to morphogen gradients controlling gene expression in embryos. Such systems, generally described by nonlinear dynamical systems, often display complex parameter dependence and exhibit bifurcations. The dynamics of heterogeneous spatially extended systems passing through bifurcations are still relatively poorly understood, yet recent theoretical studies and experimental data highlight the resulting complex behaviors and their relevance to real-world applications. We explore the consequences of spatial heterogeneities passing through bifurcations via two examples strongly motivated by applications. These model systems illustrate that studying heterogeneity-induced behaviors in spatial systems is crucial for a better understanding of ecological transitions and functional organization in brain development.more » « less
-
In networks of nonlinear oscillators, symmetries place hard constraints on the system that can be exploited to predict universal dynamical features and steady states, providing a rare generic organizing principle for far-from-equilibrium systems. However, the robustness of this class of theories to symmetry-disrupting imperfections is untested in free-running (i.e., non-computer-controlled) systems. Here, we develop a model experimental reaction-diffusion network of chemical oscillators to test applications of the theory of dynamical systems with symmeries in the context of self-organizing systems relevant to biology and soft robotics. The network is a ring of four microreactors containing the oscillatory Belousov-Zhabotinsky reaction coupled to nearest neighbors via diffusion. Assuming homogeneity across the oscillators, theory predicts four categories of stable spatiotemporal phase-locked periodic states and four categories of invariant manifolds that guide and structure transitions between phase-locked states. In our experiments, we observed that three of the four phase-locked states were displaced from their idealized positions and, in the ensemble of measurements, appeared as clusters of different shapes and sizes, and that one of the predicted states was absent. We also observed the predicted symmetry-derived synchronous clustered transients that occur when the dynamical trajectories coincide with invariant manifolds. Quantitative agreement between experiment and numerical simulations is found by accounting for the small amount of experimentally determined heterogeneity in intrinsic frequency. We further elucidate how different patterns of heterogeneity impact each attractor differently through a bifurcation analysis. We show that examining bifurcations along invariant manifolds provides a general framework for developing intuition about how chemical-specific dynamics interact with topology in the presence of heterogeneity that can be applied to other oscillators in other topologies.more » « less
An official website of the United States government
